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In granular media, the characterization of the behavior of solitary waves around interfaces is of importance
in order to look for more applications of these systems. We study the behavior of solitary waves at both
interfaces of a symmetric granular container, a class of systems that has received recent attention because it
possesses the feature of energy trapping. Hertzian contact is assumed. We have found that the scattering
process is elastic at one interface, while at the other interface it is observed that the transmitted solitary wave
has stopped its movement during a time that gets longer when the ratio between masses at the interfaces
increases. The origin of this effect can be traced back to the phenomenon of gaps opening, recently observed
experimentally.
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The propagation of a perturbation in a chain of beads in
Hertzian contact possesses soliton-like features, as first ob-
served by Nesterenko �1�. Several studies, experimental �2,3�
as well theoretical �4,5� have confirmed the existence of such
soliton-like pulses. Despite the large amount of recent work
on the subject �3,5–16�, the physics of granular media re-
mains a challenge and new effects are there to be discovered
and studied. Enlarging the number of �engineering� applica-
tions of such new effects needs a complete understanding of
the dynamics of such granular media.

The simplest granular systems are one-dimensional chains
of elastic spheres. If they are in Hertzian contact, the spheres
may be considered as point masses interacting through mass-
less nonlinear springs with elastic force F=k�3/2, where � is
the overlap of contacts and k is the spring constant �a func-
tion of the material properties� �1�. Let xi�t� represent the
displacement of the center of the ith sphere from its initial
equilibrium position, and assume that the ith sphere, of mass
mi, has neighbors of different radii �and/or mechanical prop-
erties�. Then, in absence of load and in a frictionless me-
dium, the equation of motion for the ith sphere reads

mi
d2xi

dt2 = k1�xi−1 − xi�3/2 − k2�xi − xi+1�3/2, �1�

where it is understood that the brackets take the argument
value if they are positive and zero otherwise, ensuring that
the spheres interact only when in contact.

The interaction of a solitary wave with the boundary of
two “sonic vacua” �meaning that the system does not support
linear sound waves if not precompressed� was studied for the
first time experimentally as well numerically in �5� �see also
�17–20� for a recent study�.

In this work we make a detailed numerical study of the
propagation of solitary waves in a linear chain of beads com-
posed of three sonic vacua, as shown in Fig. 1, that is, a
granular container �21,22�. These kinds of systems are of
interest because in them one can find the phenomenon of
energy trapping. It will be assumed that all spheres have the

same mechanical properties and that both ends of the chain
are free to move. We have found that the scattering process is
elastic at one interface, while at the other interface it is ob-
served that the transmitted solitary waves take a long time to
be released from one of the interfaces; this time gets longer
when the ratio between masses at the interfaces increases.
The origin of this effect can be traced back to the phenom-
enon of gaps opening, recently observed experimentally
�17,18�. As far as we know, the effect found here has not yet
been observed in experiments.

Consider a set of spheres with two different radii a and b.
It is known that adjacent spheres of radii a and b will interact
with a force F=kab�3/2, where

kab =
�ab/�a + b�

2�
, �2�

with

� =
3�1 − �2�

4E
�3�

and E is the Young modulus and � the Poisson ratio of the
bead material.

We will consider the scattering of solitary waves in a
system like the one of Fig. 1, consisting of a total of M
beads. There are two sets of beads with N1 beads located on
the left hand side, N2 on the right hand side; both sets have
beads with radii a and masses m1. Between them there are L
beads with radii b �a�b� and masses m2. Bead displace-
ments are governed by a set of equations of motion that can
be readily obtained from the successive application of Eq.
�1�, having in mind that the equation of motion for the first
�resp. the last� sphere only includes the second �resp. the
first� term, in case when there is no wall �as we here assume�.
Spring constants are kbb in the middle, kaa at right and left
hand sides and kab at the interfaces of the granular system.
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FIG. 1. Schematic granular container used in the

calculations.
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In order to have realistic results, we shall assume that the
system consists of stainless-steel beads �see �3� for their
properties�, with radii a=4 mm and b=2 mm. The number
of beads is N1=30, N2=20 and L=200. We also choose
�=10−5 m, 2.36�10−5 kg and �=1.0102�10−3 s as units
of distance, mass and time, respectively. Throughout the pa-
per we assume that initially all beads are at rest, except for
the first bead at the left side of the chain. This bead is sup-
posed to have a nonzero value of velocity in order to gener-
ate the soliton-like perturbation in the chain. We shall choose
the following initial conditions:

ui�0� = 0, i = 1, . . . ,M, u̇1�0� = 101.02�/� ,

u̇i�0� = 0, i = 2, . . . ,M .

This initial impact velocity corresponds to 1 m/s and, there-
fore, it is in the regime where plastic deformation can be
neglected. The system is studied numerically by using an
explicit Runge-Kutta method of fifth order based on the
Dormand-Prince coefficients, with local extrapolation. As
step size controller we have used the proportional-integral
step control, which gives a smooth step size sequence.

As the solitary wave gets the interface a multipulse struc-
ture is generated but no backscattered solitary wave is ob-
served. This last phenomenon has been explained by Nester-
enko et al. �17� as due to the opening of gaps in the vicinity
of left interface. These effects originate from the discreteness
of inertia and the nonlinearity of the interaction; they were
first observed by Nesterenko and co-workers �5�.

As the multipulse structure moves into the light system,
there remains some energy behind the interface and after a
while a second multipulse structure emerges, with similar
characteristics to the first one but with less energy �20�. This
is shown in Fig. 2. �It can be shown that the opening of gaps
in the vicinity of the left interface is also responsible for the
emergence of this structure.�

When the first multipulse structure interacts with the sec-
ond interface it gets immediately scattered and both transmit-
ted and reflected train of pulses appear in the right heavy
system and in the light system, respectively. Part of this pro-
cess is shown in Fig. 3.

Now let us see what happens when the backscattered
pulses �see Fig. 4� interact with the left boundary of the
granular potential well. It is observed that at time t=2.32 �
the leading backscattered pulse arrives at the interface. Con-
trary to what happens at the right interface, the transmitted
pulse moves slightly forward till time t=2.343 � where it
“freezes.” Even more intriguing is the fact that only beyond
time t=2.462 � does the transmitted pulse starts to move
into the heavy system. In our original units of time this
means that the transmitted pulse has stopped its movement
during 1.2�10−4 s approximately. This coincides with the
fact that the second pulse of the multipulse structure ap-
proaches close to the interface. It is interesting to notice also
that the backscattered pulses scatter without delay at this
interface.

If we allow for the first bead to have more energy at
t=0 s, it is observed that the characteristics of the scattering
process around the second interface are similar to the one
observed before: the scattering is elastic. At the left interface
the situation has not essentially changed; there still is a de-
layed transmitted pulse.

FIG. 2. Velocity of beads �in program units� as a function of
bead number. Primary and secondary multipulse structures.

FIG. 3. Velocity of beads �in program units� as a function of
bead number. Scattering of the leading pulse of the multipulse
structure at the second interface, for different times: t=1.303 � �full
line�, t=1.31 � �dashed line� and t=1.32 � �long-dashed line�.

FIG. 4. Velocity of beads �in program units� as a function of
bead number. Scattering of the first pulse of the backscattered
multipulse structure at the first interface, for different
times: t=2.335 � �dotted line�, t=2.35 � �full line�, t=2.36 �
�long-dashed line� and t=2.462 � �short-dashed line�.
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To get more insight into this scattering process, let us
observe the behavior of the velocity of beads as a function of
time. We shall analyze that behavior at both interfaces to see
the differences and try to find an explanation for this scatter-
ing. To that end we shall fix our attention on those beads
around the interfaces.

In Fig. 5 we show the velocity of beads between beads
227 and 231 �i.e., around the right interface� in the time
interval 1.303 � and 1.33 �. It can be straightforwardly dem-
onstrated that this behavior is analogous to that found in a
system with only two sonic vacua, in case a solitary wave,
traveling in an unperturbed medium from the light to the
heavy system, scatters from the interface. So it is important
to stress that �in the case at hand� in the light system we have
solitary waves traveling in it; they correspond �at least� to
those leading pulses of the multipulse structure.

In Fig. 6 the velocity of beads 27–30 �i.e., around the left
interface� is shown. The big difference between this behavior
and the one found at the right interface is notorious. From
here we deduce that the origin of the delayed behavior in the
scattering process resides in the fact that, contrary to what
happens at the right interface, around the left interface beads
acquire a constant velocity in the interval t� �2.33� ,2.48��,

where we have previously seen that the transmitted pulse has
stopped its movement during a long time. It is also interest-
ing to notice that bead 27 remains at rest during this interval.

When changing the ratio of masses �in this case, the ratio
a :b� one observes that the interval that takes the transmitted
pulse to leave the interface increases. For example, one sees
that by keeping the mass and initial velocity of the impacting
bead as before, the intervals from the arrival to the left inter-
face of the first backscattered pulse to the instant when the
transmitted pulse starts to leave the interface are approxi-
mately 0.744 ms, for a=6 mm and b=2 mm, and 1.244 ms,
for a=8 mm and b=2 mm, respectively �compare with an
interval of approximately 0.143 ms for the case a=4 mm and
b=2 mm. A numerical experiment with L=50 beads in the
interior of the container shows that this time interval does
not depend on L�.

In case a=6 mm and b=2 mm, Fig. 7 shows the behavior
of the velocity of beads for beads 27–30 in the interval
t� �2.8,3.392� �, where the transmitted pulse remains “fro-
zen” at the interface. Notice that such behavior for beads 27,
28 and 29 is essentially the same as the one observed in Fig.
6 for the same beads �in particular, bead 27 remains at rest�.
This confirms that the reason for the behavior observed in
this work resides in the fact that some beads near the inter-
face acquire a constant velocity during the interval where the
transmitted solitary wave retards its movement. Now, a con-
stant velocity means that no forces are acting on them and
therefore the phenomenon of gaps opening occurs.

Using a detailed numerical approach, we have studied the
scattering of solitary waves in a granular container consisting
of three sonic vacua with Hertzian contact. We have found
that the scattering process is elastic at the second interface,
while at the first interface it is observed that the transmitted
solitary wave has stopped its movement during a time that
gets longer when the ratio between masses at the interfaces
increases. At the same time, the reflected pulses appear to

FIG. 5. Velocity of beads �in program units� as a function of
time �in units of �� for beads 227 �full line�, 228 �short-dashed
line�, 229 �long-dashed line�, 230 �dashed-dotted line� and 231 �dot-
ted line�.

FIG. 6. Velocity of beads �in program units� as a function of
time �in units of �� for beads 27 �full line�, 28 �short-dashed line�,
29 �long-dashed line� and 30 �dotted line�.

FIG. 7. Velocity of beads �in program units� as a function of
time �in units of �� for beads 27 �full line�, 28 �short-dotted line�,
29 �long-dashed line� and 30 �dashed-dotted line�.
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scatter elastically from the first interface. The opening of
gaps in the vicinity of the left interface plays a crucial role in
the observed behavior. The understanding of this kind of
behavior may be of help for applications of energy-trapping
granular containers.
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